CLASSIFICATION OF STUNTING IN CHILDREN UNDER FIVE YEARS IN PADANG CITY USING SUPPORT VECTOR MACHINE

نویسندگان

چکیده

Stunting is a nutritional problem in children characterized by the child’s height that less than twice standard deviation of median from growth has been determined WHO. influenced many factors. If conditional these factors are known, it can be expected earlier whether child stunted or not. In this study, prediction stunting was carried out using Support Vector Machine (SVM) classification method. SVM method to find best hyperplane used separate two more classes. parameter model must cost value and gamma. Based on result research parameters cost=10 gamma=5, estimation with 100% accuracy obtained.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Support Vector Machine Based Facies Classification Using Seismic Attributes in an Oil Field of Iran

Seismic facies analysis (SFA) aims to classify similar seismic traces based on amplitude, phase, frequency, and other seismic attributes. SFA has proven useful in interpreting seismic data, allowing significant information on subsurface geological structures to be extracted. While facies analysis has been widely investigated through unsupervised-classification-based studies, there are few cases...

متن کامل

metrics for the detection of changed buildings in 3d old vector maps using als data (case study: isfahan city)

هدف از این تحقیق، ارزیابی و بهبود متریک های موجود جهت تایید صحت نقشه های قدیمی سه بعدی برداری با استفاده از ابر نقطه حاصل از لیزر اسکن جدید شهر اصفهان می باشد . بنابراین ابر نقطه حاصل از لیزر اسکنر با چگالی حدودا سه نقطه در هر متر مربع جهت شناسایی عوارض تغییر کرده در نقشه های قدیمی سه بعدی استفاده شده است. تمرکز ما در این تحقیق بر روی ساختمان به عنوان یکی از اصلی ترین عارضه های شهری می باشد. من...

Classification of Arrhythmias Using Support Vector Machine

Detection of ventricular fibrillation (VF) and hasty ventricular tachycardia (VT) is crucial for the success of the defibrillation analysis. The algorithm that combines ECG parameters with Multicast SVM to categorize VF/shockable arrhythmias has been offered. The multicast SVM learning algorithms can increase the effectiveness for the exposure of lifethreatening arrhythmias. FS methods might he...

متن کامل

support vector machine based facies classification using seismic attributes in an oil field of iran

seismic facies analysis (sfa) aims to classify similar seismic traces based on amplitude, phase,frequency, and other seismic attributes. sfa has proven useful in interpreting seismic data, allowingsignificant information on subsurface geological structures to be extracted. while facies analysis hasbeen widely investigated through unsupervised-classification-based studies, there are few casesass...

متن کامل

Pattern Classification Using Support Vector Machine Ensemble

While the support vector machine (SVM) can provide a good generalization performance, the classification result of the SVM is often far from the theoretically expected level in practical implementation because they are based on approximated algorithms due to the high complexity of time and space. To improve the limited classification performance of the real SVM, we propose to use an SVM ensembl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Barekeng

سال: 2022

ISSN: ['1978-7227', '2615-3017']

DOI: https://doi.org/10.30598/barekengvol16iss3pp771-778